Linear Regression
Description: Models the linear relationship between input features and a continuous target by fitting a line to minimize prediction errors.
Use Cases:
- Real Estate: Predicting house prices based on size and location.
- Finance: Forecasting stock trends from historical data.
Best Library: scikit-learn
View Python Script
import os import pandas as pd from sklearn.linear_model import SGDRegressor from sklearn.preprocessing import StandardScaler from azure.storage.blob import BlobServiceClient # Azure Variables (Modify for actual use) azure_account_name = 'your_storage_account_name' azure_account_key = 'your_storage_account_key' container_name = 'your_container_name' blob_prefix = 'train_data_part_' num_parts = 10 # Connect to Azure Blob Storage connect_str = f"DefaultEndpointsProtocol=https;AccountName={azure_account_name};AccountKey={azure_account_key};EndpointSuffix=core.windows.net" blob_service_client = BlobServiceClient.from_connection_string(connect_str) container_client = blob_service_client.get_container_client(container_name) # Initialize Model (Incremental with SGD) model = SGDRegressor() scaler = StandardScaler() # Train Sequentially for part in range(1, num_parts + 1): blob_name = f"{blob_prefix}{part}.csv" blob_client = container_client.get_blob_client(blob_name) temp_file = f"temp_data_part_{part}.csv" with open(temp_file, "wb") as f: download_stream = blob_client.download_blob() f.write(download_stream.readall()) df = pd.read_csv(temp_file) X = df.drop('target', axis=1).values y = df['target'].values # Scale and Partial Fit scaler.partial_fit(X) X_scaled = scaler.transform(X) model.partial_fit(X_scaled, y) os.remove(temp_file) # Save Model import joblib joblib.dump(model, 'linear_regression_model.pkl') print("Training complete. Model saved.")